Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
弱监督的点云语义分割方法需要1 \%或更少的标签,希望实现与完全监督的方法几乎相同的性能,这些方法最近引起了广泛的研究关注。该框架中的一个典型解决方案是使用自我训练或伪标记来从点云本身挖掘监督,但忽略了图像中的关键信息。实际上,在激光雷达场景中广泛存在相机,而这种互补信息对于3D应用似乎非常重要。在本文中,我们提出了一种用于3D分割的新型交叉模式弱监督的方法,并结合了来自未标记图像的互补信息。基本上,我们设计了一个配备有效标签策略的双分支网络,以最大程度地发挥标签的力量,并直接实现2D到3D知识转移。之后,我们以期望最大(EM)的视角建立了一个跨模式的自我训练框架,该框架在伪标签估计和更新参数之间进行了迭代。在M-Step中,我们提出了一个跨模式关联学习,通过增强3D点和2D超级像素之间的周期矛盾性,从图像中挖掘互补的监督。在E-Step中,伪标签的自我校准机制被得出过滤噪声标签,从而为网络提供了更准确的标签,以进行全面训练。广泛的实验结果表明,我们的方法甚至优于最先进的竞争对手,而少于1 \%的主动选择注释。
translated by 谷歌翻译
图形对比学习(GCL)已成为学习图形无监督表示的有效工具。关键思想是通过数据扩展最大化每个图的两个增强视图之间的一致性。现有的GCL模型主要集中在给定情况下的所有图表上应用\ textit {相同的增强策略}。但是,实际图通常不是单态,而是各种本质的抽象。即使在相同的情况下(例如,大分子和在线社区),不同的图形可能需要各种增强来执行有效的GCL。因此,盲目地增强所有图表而不考虑其个人特征可能会破坏GCL艺术的表现。 {a} u Mentigation(GPA),通过允许每个图选择自己的合适的增强操作来推进常规GCL。本质上,GPA根据其拓扑属性和节点属性通过可学习的增强选择器为每个图定制了量身定制的增强策略,该策略是插件模块,可以通过端到端的下游GCL型号有效地训练。来自不同类型和域的11个基准图的广泛实验证明了GPA与最先进的竞争对手的优势。此外,通过可视化不同类型的数据集中学习的增强分布,我们表明GPA可以有效地识别最合适的数据集每个图的增强基于其特征。
translated by 谷歌翻译
夜间场景解析(NTSP)对于许多视觉应用是必不可少的,尤其是对于自动驾驶。大多数现有方法都是为了解析白天的现有方法。他们依靠在照明下建模基于像素强度的空间上下文线索。因此,这些方法在夜间场景中表现不佳,因为这种空间上下文提示被埋葬在夜间场景中的过度/暴露区域中。在本文中,我们首先进行了基于图像频率的统计实验来解释白天和夜间场景差异。我们发现,在白天和夜间场景之间,图像频率分布有很大差异,并且了解此类频率分布对于NTSP问题至关重要。基于此,我们建议利用图像频率分布来解析夜间场景。首先,我们提出了一个可学习的频率编码器(LFE),以模拟不同频率系数之间的关系,以动态测量所有频率组件。其次,我们提出了一个空间频率融合模块(SFF),该模块融合了空间和频率信息,以指导空间上下文特征的提取。广泛的实验表明,我们的方法对夜总会,夜城+和BDD100K晚数据集的最先进方法表现出色。此外,我们证明我们的方法可以应用于现有的白天场景解析方法,并在夜间场景中提高其性能。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
众所周知,由出色的文档级神经机器翻译(NMT)模型产生的翻译是一致且连贯的。但是,像BLEU这样的现有句子级评估指标几乎无法反映模型在文档级别的性能。为了解决这个问题,我们在本文中提出了一种话语凝聚评估方法(DCOEM),并贡献了一个新的测试套件,该套件考虑了四个凝聚力的方式(参考,连接,替代和词汇凝聚力),以衡量文档翻译的凝聚力。最近的文档级NMT系统的评估结果表明,我们的方法在估计文档级别的翻译方面是实用且至关重要的。
translated by 谷歌翻译
尽管最近取得了成功,但基于学习的深度学习方法用于预测身体运动下的3D服装变形,却遇到了服装与身体之间的互穿问题。为了解决这个问题,我们提出了一种新颖的碰撞处理神经网络层,称为排斥力单位(REFU)。根据基础主体的签名距离函数(SDF)和当前的服装顶点位置,Repu预测了将任何互穿顶点推向无冲突的配置,同时保留精细的几何学细节,这些偏移量将任何互穿顶点推向无冲突的配置。我们表明,RECU可以通过可训练的参数进行区分,并且可以集成到预测3D服装变形的不同网络骨架中。我们的实验表明,与基于碰撞损失或后处理优化的先前方法相比,相比,RECU可显着减少身体与服装之间的碰撞数量,并更好地保留几何细节。
translated by 谷歌翻译
最近,与传统标准(例如JPEG,JPEG2000和BPG)相比,学到的图像压缩方法已经迅速发展,并表现出出色的速率延伸性能。但是,基于学习的方法遭受了高计算成本的损失,这对在资源有限的设备上部署无济于事。为此,我们提出了换档 - 附加并行模块(SAPMS),包括用于编码器的SAPM-E和解码器的SAPM-D,以大大减少能源消耗。具体而言,可以将它们视为插入式播放组件,以升级现有的基于CNN的体系结构,与加法分支相比,Shift分支用于提取大颗粒功能。此外,我们彻底分析了潜图的概率分布,并建议使用拉普拉斯混合物的可能性以进行更准确的熵估计。实验结果表明,所提出的方法可以在PSNR和MS-SSSIM指标上与卷积对应物的相当甚至更好的性能,并减少2倍的能量。
translated by 谷歌翻译
自Covid-19的大流行以来,提出了几种深度学习方法来分析胸部计算机断层扫描(CT)进行诊断。在当前情况下,疾病课程分类对于医务人员决定治疗非常重要。大多数以前的深度学习方法提取了从肺窗口观察到的特征。但是,已经证明,从纵隔窗口而不是肺部窗口可以更好地观察到与诊断相关的某些外观,例如,肺部整合发生在严重症状中。在本文中,我们提出了一个新颖的双窗口RCNN网络(DWRNET),该网络主要从连续的纵隔窗口中学习独特的功能。关于从肺窗口提取的功能,我们介绍了肺窗口注意区(LWA块),以增加关注它们以增强纵隔窗口功能。此外,我们没有从整个CT切片中拾取特定的切片,而是使用Recurrent CNN并将连续的切片分析为视频。实验结果表明,融合和代表性的特征通过达到90.57%的准确性,与基线相比,精度为84.86%,可以改善疾病病程的预测。消融研究表明,组合的双窗口功能比单独的肺窗口功能更有效,同时注意肺窗口功能可以提高模型的稳定性。
translated by 谷歌翻译
输入分布转移是无监督域适应(UDA)中的重要问题之一。最受欢迎的UDA方法集中在域不变表示学习上,试图将不同域中的功能调整为相似的特征分布。但是,这些方法忽略了域之间的输入单词分布的直接对齐,这是单词级分类任务(例如跨域NER)的重要因素。在这项工作中,我们通过引入子词级解决方案X-Pience来为输入单词级分布移动,从而为跨域NER开发了新的灯光。具体而言,我们将源域的输入单词重新划分以接近目标子词分布,该分布是作为最佳运输问题制定和解决的。由于这种方法着重于输入级别,因此它也可以与先前的DIRL方法相结合,以进一步改进。实验结果表明,基于四个基准NER数据集的Bert-Tagger所提出的方法的有效性。同样,事实证明,所提出的方法受益于诸如Dann之类的DIRL方法。
translated by 谷歌翻译